

TEST CODE 02112010

MAY/JUNE 2006

FORM TP 2006183

CARIBBEAN EXAMINATIONS COUNCIL

ADVANCED PROFICIENCY EXAMINATION

CHEMISTRY

UNIT 1 - PAPER 01

1 hour 45 minutes

Candidates are advised to use the first 15 minutes for reading through this paper carefully. Writing may begin during this time.

READ THE FOLLOWING INSTRUCTIONS CAREFULLY

- This paper consists of NINE questions.
- 2. There are THREE questions from each Module. Answer ALL questions.
- 3. Write answers in this booklet.
- 4. ALL working must be shown in this booklet.
- 5. The use of non-programmable calculators is permitted.
- A data booklet is provided.

MODULE 1

Answer ALL questions.

1. A sample of titanium gives the mass spectrum shown in Figure 1.

Figure 1

 (a) Calculate the relative atomic mass A_p of titaniun 	(a)	Calculate	the relativ	e atomic	mass	A,	of titaniu	n.
--	-----	-----------	-------------	----------	------	----	------------	----

[2 marks]

(b) Use the data booklet and the mass spectrum given above to determine the number of protons and neutrons of the most abundant isotope of titanium.

[3 marks]

(c) Using s, p, d, f notation, write the electronic configuration of titanium.

[1 mark]

			[2 n
:)	Another isotope of tit single negative charg	anium, ⁵¹ Ti, decays by β -er	mission. A β-particle has no mass resent the decay of a 51 Ti atom.
	-		[2n
			Total 10 m
	of these substances.		
		AND BOILING POINT O	OF AMMONIA AND WATER Boiling point / °C
	LE 1: BOND ANGLE		Boiling point / °C
		Bond angle	T
	LE 1: BOND ANGLE Ammonia Water	Bond angle	Boiling point / °C - 31 100 nia molecules.
(AB	Ammonia Water Sketch the shape of E	Bond angle 107° 104.5° OTH the water and ammon	Boiling point / °C - 31 100
AB	Ammonia Water Sketch the shape of E Explain the difference	Bond angle 107° 104.5° OTH the water and ammon	Boiling point / °C - 31 100 nia molecules.

	(ii)	boiling points of water and ammonia.	
			[2 marks]
(c)	(i)	Suggest the shape of a molecule of hydrogen sulphide.	
		NHE	[1
			[1 mark]
	(ii)	How would the boiling point of hydrogen sulphide ammonia? Explain your answer.	compare with that of
			[2 marks]
			Total 10 marks
(a)	Dofin	the term 'enthalpy change of solution'.	
(a)	Dem	e the term 'enthalpy change of solution'.	
	-		
	-		
	_		
	_		[1 mark]
b)	(i)	State Hess' Law.	
		8	
			[1 mark]

(ii) Use the data in Table 2 and apply Hess' Law to determine the enthalpy of solution of hydrogen fluoride gas.

TABLE 2: ENTHALPY CHANGES ASSOCIATED WITH DISSOLUTION OF HF GAS

Enthalpy change (Δ H)	KJ mol ⁻¹
Δ H HF Bond dissociation (BD)	+ 562
Δ H F Electron Affinity (EA)	- 328
Δ H H Ionization Energy (I.E)	+ 1310
Δ H F- Hydration (Hyd)	- 506
Δ H H ⁺ Hydration (Hyd)	- 1300

	_
[51	narks

Description of the Party

	[3

MODULE 2

Answer ALL questions.

Aspartame, the structure shown in Figure 2 below, is an artificial sweetener. It is about 200 times 4. sweeter than sucrose.

Figure 2

(a)	Whic	h of the functional groups present in aspartame would react with	
	(i)	cthanol?	
	(ii)	dilute hydrochloric acid?	[1 mark]
			[2 marks

(iii) ethanoyl chloride?

[1 mark]

(b) Name the OTHER chemical that is required for the reaction with ethanol to occur.

[1 mark]

(c) The scheme in Figure 3 shows that the conversion of A to C occurs in two steps. A is converted to B on treatment with SOCl₂.

(i) Draw the structural formula of B.

[1 mark]

(ii) State the reagents and conditions required for the conversion of B to C.

[2 marks]

(iii) State ONE physical property that is characteristic of BOTH Compound C and that obtained in the reaction described in (b) above. Explain your answer.

[2 marks]

Total 10 marks

5. Dopa is a naturally occurring amino acid, used in the treatment of Parkinson's disease. A condensed formula, A, of this molecule is shown in Figure 4.

Figure 4

	[2 marks]
Write	the molecular formula of Dopa.
	[1 mark]
Dopa	is one isomeric form of the molecular formula in (b) above.
(i)	Define the term 'isomerism'.
	[1 mark]
(ii)	
(ii)	[1 mark] State TWO types of isomerism which can be exhibited by a molecule with for-

stated in (c) (ii) on pa		
Type I:		
Type II:		
1) pc 11.		

6. The sequence of monomer units in a macromolecule is called its primary structure. Part of the primary structure of one macromolecule, A, is shown in Figure 5.

Figure 5

(a) (i) How many monomer units are present in this portion of the macromolecule?

[1 mark]

(ii) Draw the displayed structure of two monomers used to make A.

[2 marks]

(b) To what class of compounds do the monomers and macromolecule, A, belong?

Monomer:

Macromolecule A:

[2 marks]

Name the type of reaction that occurs when nylon 6.6 or A is boil	led with concen-
trated hydrochloric acid.	
	[1 mark]
Copy the structure of A and use it to illustrate the changes that reaction described in (c) (i) above.	occur during the
	[1 mark]
Draw the fully displayed structure of ONE product of the reaction (i) above.	described in (c)
	[1 mark]
te ONE common structural feature and ONE different structural feat A.	ture in nylon 6.6
	[2 marks]
T	otal 10 marks

MODULE 3

Answer ALL questions.

titrati		200 - 3
(a)	State THREE characteristics of ethanedioic acid that make it	a suitable primary stand
		[3 ma
(b)	In preparing the solution of ethanedioic for titration against the of laboratory equipment with a high degree of accuracy are pieces of equipment.	
		[2 ma
(c)	25.0 cm ³ of the aqueous solution of M requires 24.80 cm ³ of 6 for complete reaction. The equation for the reaction is	
(c)	[경영 유지 (1) (1) [전에 전체 (1) [전에 (1) [Theorem (1) [The	0.02 mol dm ⁻³ permanga
(c)	for complete reaction. The equation for the reaction is	0.02 mol dm ⁻³ permanga
(c)	for complete reaction. The equation for the reaction is $5~{\rm Fe^{2+}(aq)}~+~{\rm MnO_4^-(aq)} + 8{\rm H^+(aq)}~\rightarrow~5~{\rm Fe^{3+}(aq)}~+$	0.02 mol dm ⁻³ permanga
(c)	for complete reaction. The equation for the reaction is $5 \ Fe^{2^+}(aq) + MnO_4^-(aq) + 8H^+(aq) \rightarrow 5 \ Fe^{3^+}(aq) + Calculate EACH of the following:$	0.02 mol dm ⁻³ permanga
(c)	for complete reaction. The equation for the reaction is $5 \ Fe^{2^+}(aq) + MnO_4^-(aq) + 8H^+(aq) \rightarrow 5 \ Fe^{3^+}(aq) + Calculate EACH of the following:$	manazione e esta e en esta en el e

[1 mark]

(iii)	The number of moles Fe ²⁺ in 1.0 dm ³ of M (aq)	
		[1 mark]
(iv)	The mass of Fe ²⁺ in 1 dm ³ of M (aq)	
		[1 mark]
(v)	The % Fe ²⁺ in the compound [The mass concentration of M is 40	0.90 g dm ⁻³ .]
		[1 mark]
	То	tal 10 marks

A var	iety of c	thromatographic methods can be used to separate mixtures.
(a)	(i)	What is meant by retention time as applied to gas liquid chromatography (GLC)
		[1 mark
	(ii)	Distinguish between a stationary phase and a mobile phase used in chromatography
		[2 marks
	(iii)	Give ONE example EACH of commonly used stationary and mobile phases in GLC.
		[2 marks
(b)	using solver	les of TWO different brands of black ink are separated into their constituent part paper chromatography. Both samples contain a red dye. In the first sample the travels 7.54 cm, while the red dye travels 4.67 cm. In the second sample the red avels 3.31 cm while the solvent travels 5.34 cm.
	(i)	Calculate the R _f values for the TWO samples.

[2 marks]

	(ii)	Deduce whether the same red dye is used to make both types of ink. Give TWO reasons for your answer.
		Section Control and American Control of Cont
		[3 marks]
		Total 10 marks
	the pri	nciples upon which infra red (IR) spectroscopy is based.
	_	
		[3 marks]
(b)	Even t warmi	hough air consists of 78% $\rm N_2$ and 21% $\rm O_2$, these gases do not contribute to global ng. Explain this phenomenon.
	3	
	-	
	-	
		[2 marks]

	[1 mark]
e carbonyl group, $C = O$, has absorption peakile the peaks for the alkene group, $C = C$, and $C = C$, what does this say about the bond enemal groups?	are manifested in the region of 1610 to
	[1 mark]
great ()NE reason why H('I had only one need	n ite ID enectrum
ggest ONE reason why HCl has only one peak	ii iis IK specirum.
ggest ONE reason why ACI has only one peak	[1 mark]
The monochromator and sample cell are eter. Give ONE reason why the monoconstructed of glass or quartz.	[1 mark]
The monochromator and sample cell are of eter. Give ONE reason why the monochromator	[1 mark]

END OF TEST

Total 10 marks